Mastering
event sourcing

A game changing design pattern for distributed systems

Overview

o

Distributed systems problems
Difficulties building them today

Distributed systems solutions

Tackling distributed systems complexity

Event sourcing

Formalizing solution patterns into rules

Demo
A Real Event-Sourced Application

Q&A

Today’s problems
Building distributed apps is hard

Multiple sources of truth

e \Which truth is the real truth?

e Datafrom the edge

e Data from mobile

e Datafrom the cloud

e Conflicting data from multiple sources

e Derived, n-level data

Lack of audit trail

e HHowdid we get here?

e |Whyisthe state the way itis?

e |Whendid it become that way?

e Can we regenerate state based on new logic?

e Run what-if scenarios?

Distributed, concurrent writes

e Lastwritewins

o Writes based on outdated information

o Often notthe right conflict resolver

e Etags/ optimistic concurrency

e Eventually we take on conflict complexity

o UseCRDTs
o Rollourown RAFT @9

o “Retryuntilitworks”™ / “Hope-based consistency”

e Distributed transactions

AKKA

Spending on the wrong things

Time and Effort

Features
10.0%

Distributed Systems
90.0%

Normalized, relational data

On-demand queries often too slow and don't scale

e Maybe..move data closer to edge to make query run faster
e But..now we have more consistency problems
e Maybe..add a cache layer to improve queries

e But..now we have more complexity

Today’s solutions

Patterns for building distributed apps

One source of truth

e Everythingis animmutable event

e Record of what did happen, not what failed to happen
e Eventually consistent

e Safely distributed

e Developers should not code their own conflict resolvers

Embrace eventual consistency

|ldentify activities that need strict consistency
- More often than not, eventual consistency is enough

\What data can be stale, and how stale?
When do you need to read your own writes?
Be explicit about consistency €<-> perf/complexity

tradeoffs

There is no such thing as a transaction

e Distributed transactions provide false
sense of security

e \Whatdoyoudowhen
rollback/compensation fails?

e Evendistributed transactions require

conflict resolution

Generate query results before users
need them

e Materialized views

o Denormalized data

o Shaped for consumer needs, not database needs

e O(1) query cost whenever possible
e Makes it easy to replicate views

e \iews can be used as explicit consistency boundaries

AKKA

Spending on the right things

Time and Effort

Distributed Systems
10.0%

Features
90.0%

Event Sourcing

Formalizing rules and patterns

Everything you need to know

f(state, event) = state’
f(state, command) = { event , event,,

Write less code, get distributed system as a bonus

The building blocks

e Events/Eventlog

e Command

e Entity (aggregate)

o \iew

e \Workflow (process manager)

e Producers and Consumers (gateway)

Commands

e Arequestto produce an effect

o Persist an event

o Philosophy debate: should commands be used to query data?
e Ephemeral

o Commands do not exist

o Neverincluded in replay

Events

e Represent something that occurred in the past
e |Immutable

e “Reality” isevent sourced

o Input gathered from many senses, reality (a.k.a. “a view”)

produced in near-real time

f(state, event) = state’
f(state, command) = { event,, event,, ...

Entities

e Handle commands

o Validate command against current state

o Generate effects in response, or reject command

e Produce events

e Apply events to state

NS

For FP fans: left fold over an event stream
Apply events to (often denormalized) data
Consumer-friendly data, optimized for O(1) query

Views are easily evolved:

o Changelogicin code

o Replay event stream, regenerate view
Different scale, resilience, replication needs than entity state

o Views should not be used to make entity decisions

Workflows

e Manage “long-running” processes
e Define steps ascode

e Examples..

o Shopping carts
o Ticket holding (movies, concert, airline)
o Fulfillment

o .. many more

Mutable state vs events

Bank Account 867001 Bank Account 867001

Balance Deposit
$4200:12 $200:12

Withdrawal

$765.21

Transfer from 9021123
$1321.41

The event sourcing RULES

e [Never modify an event

e [Neverread the “wall clock™ for state

e [Never®userandom numbers to produce state
e Do not model “failed to create” as events

e [Never® produce side effects when processing events

How to build event
sourced apps with Akka =

Simple developer experience

e Model event sourced domain

o Lesscode
o Easier to maintain

o Smaller cognitive overhead
e |etexpertsdeal with deploy, distribute, etc

o Trust, but verify

Thank you

Get Started
for Free

https://akka.io
https://docs.akka.io
https://github.com/akka-samples/akka-chess

