
Akka Cell-Based 
Architecture Guide

TECHNICAL REFERENCE



Table of Contents

Introduction 1

What is a cell-based architecture? 1

What is cell-based architecture? 1

Benefits of a cell-based architecture 2

Challenges and considerations 2

How Akka supports a cell-based architecture 4

Akka benefits for cell-based architectures 4

Summary 12

Next steps 12



1

Akka Cell-Based 
Architecture Guide

Introduction 

What is cell-based architecture?

Cell-based architectures are on the rise in 
recent years. The desire to isolate workloads 
for improved elasticity and agility as well as to 
isolate the “blast radius” or area of impact from 
failures has been a major driver. This pattern is 
also ideally suited for cloud-native applications.

The rise of AI-centric applications and agentic 
AI is creating an even greater need for agility 
and increased velocity that adopting a cell-
based architecture can bring. In addition, cell-
based architectures, when combined with event 
sourcing (providing a level of agency), are a 
great fit for this approach, as agentic systems 
and LLMs are inherently event driven, and 
also bring new challenges in dealing with the 
isolating impact of AI APIs which can often be 
unreliable, slow and behave unpredictably.

Akka is a platform for building and running 
applications designed to deliver guaranteed 

resilience and achieve up to 99.9999% 
availability. This level of availability is 
accomplished by running applications 
concurrently across multiple regions,  
with seamless, transparent data replication 
between regions to ensure consistency and  
fault tolerance.

Akka Platform deploys cell-based applications 
into Bring Your Own Cloud (BYOC) regions 
within major cloud providers, including AWS, 
GCP, and Azure. These regions operate entirely 
within the customer’s Virtual Private Cloud 
(VPC/VNet), ensuring customers maintain 
custodial ownership of the infrastructure and 
the environment where the Akka applications 
are executed. Akka BYOC regions are installed, 
monitored, and updated by the Akka team, 
enabling organizations to benefit from Akka’s 
operational expertise while maintaining full 
control over their cloud environments.

A cell-based architecture in computing is, in 
essence, an architecture for systems built of 
modular self-contained “cells” that can be 
built into applications, networks, and other 
systems. In application architectures, cell-based 
architectures refer to applications or systems 
built of modular “cells” which are self-contained 
deployment modules containing all required 
interdependent components across data, 
application logic, memory and compute, that 
can be easily deployed and scaled, typically onto 
container-based run times like Kubernetes and 
Docker, and elastically scaled up/down.

Historically, the earliest cell-based examples were 
in telecommunications, where the cells were 
building blocks for mobile networks, giving rise to 
the term cellular communications and cell phones. 
In computing hardware, cell-based paradigms 

have been applied widely in building memory, 
processors, high density storage, and compute. 

Cell-based architecture tenets
• Cells should be fully self-contained and 

modular, with failure Isolation — Logic 
and State should be sharded or partitioned 
with each logical cell having self-contained 
complete state, following the Bulkheading 
pattern (modeled after ships with bulk-heads 
to isolate hull breaches.) Cells should have 
fault isolation boundaries that restrict the 
effect of failure on other cells. Smaller cells 
can generally isolate failures more effectively. 

• Cross-cell replication — replication between 
cells for both resilience and inter-cell and 
inter-cell and inter-service communication 

https://doc.akka.io/concepts/multi-region.html
https://doc.akka.io/concepts/multi-region.html


2

Akka Cell-Based 
Architecture Guide

should be seamless and automated.

• Cell fail-over / fail-back — failover for 
resilience and disaster recovery should also be 
seamless and automated.

• Truly self-contained independent cells should 
support rolling updates and deployments 
without system wide outage or a need for 
complex deployment techniques such as blue-
green deployments. Cell-based architectures 
may also enable easier A/B testing.

• Run anywhere — multi-cloud — application 
cells should be self-contained and run 
anywhere, across Azure, GCP, and AWS  
and hybrid.

• Local development and testing, CI/CD 
DevOps — cell-based architectures enable 
greater velocity and agility for development 
teams. Developers can develop independently 
locally and deploy continuously. Cell-based 
architectures also simplify continuous and 
automated testing, improving reliability, and 
enabling techniques like canary deployments 
at a more granular level.

• Reusability of code across all cells — 
granularity in cell-based architectures can 
facilitate greater reuse while also enabling 
cells to run independently so that some cells 
may be updated at different times from others 
despite sharing code.

Benefits of a  
cell-based architecture
• Up to five or even six nines of uptime — 

Data can be replicated between cells across 
availability zones for resilience and across data 
center or cloud regions for disaster recovery. 
The limited “blast radius” of errors further 
improves resilience.

• Zero downtime deployments — Cells are self-
contained and independent, so deployments 
to one cell won’t affect others. This enables 
continuous deployments without downtime.

• Security advantages — Cell-based 
architectures allow granular security controls 

and isolation of where and how cells run. 
This supports data sovereignty, privacy, and 
compliance with regional regulations. They’re 
especially suited for Zero Trust Security.

• Multi-cloud and hybrid cloud readiness — 
Cell-based architectures can be deployed 
across cloud regions, data centers, and edge 
environments. This makes them ideal for 
multi-cloud and hybrid cloud architectures.

• Ease of development and testing — Cells 
support local development and testing, 
making them easy to build, code, and maintain 
over time.

• Code reusability — Code can be shared 
across cells without creating complex 
interdependencies, streamlining maintenance.

• Efficient hardware utilization — Modular 
cells combining memory, compute, and 
storage can be tuned for performance. Paired 
with the Actor Model and Event Sourcing, 
this eliminates blocking calls and optimizes 
hardware use.

• Data sovereignty and privacy — Independent, 
self-contained cells help meet data sovereignty 
and privacy requirements more easily.

• Lower operational complexity — Cells’ 
modularity simplifies root cause identification 
and limits the impact of failures, reducing 
operational costs and outages.

Challenges and considerations
• Implementation considerations — 

Cell-based architectures demand careful 
attention to partitioning strategies and a 
deeper understanding of distributed systems. 
Techniques like Event Sourcing, CQRS and 
Sagas help maintain cell isolation and address 
failures effectively.

• Architectural and design needs — These 
systems require upfront sophistication to ensure 
the architecture aligns with the cell-based model.

• Observability hurdles — Cross cell interaction in 
large, complex systems can make observability 
and tracing issues more challenging.



3

Akka Cell-Based 
Architecture Guide

• Supporting technologies — Cell-based 
architectures thrive when paired with other 
patterns like Event Sourcing, CQRS, and the 
Actor Model. Automation technologies such 
as Kubernetes, CI/CD Tools, infrastructure 
as code, and service meshes further boost 
reliability and performance.

Challenges with many cloud technologies 
and cell-based architectures
Adopting a Cell-based architecture will not 
yield the scale and efficiency without changing 
the paradigm away from traditional 3 tier 
architectures and technologies such as Spring 
or .Net, Postgres, Kafka, Spark, Flink and others. 
There is still limited abstraction of resources for 
developers, inherent interdependencies that 
limit the ability to isolate cells and limit the blast 
radius of failures, further complicating testing 
and DevOps. These technologies also don’t 
scale efficiently and elastically, often requiring 
over provisioning to ensure handling peak loads 
or to support blue-green deployments.

Key challenge: blocking calls and complexity.
Even with a Cell-based architecture, traditional 
distributed microservice, database and event 
bus technologies still run into challenges with 
blocking calls tying up resources resulting in 
brittle applications. Locks and synchronous calls 
ripple across distributed systems that don’t adopt  
Event Sourcing and the Actor Model. The lack 
of isolated data locality further complicates 
deployment, operations, and performance 
and resilience and the added unnecessary 
network hops further add latency, introducing 
bottlenecks. Cells built with these technologies 
may be isolated from other cells during failures, 
but within these cells, there remains complexity 
and brittleness.

Akka’s platform enables these seamlessly while 
enabling developers to focus on business logic, 
as you will see next.



4

Akka Cell-Based 
Architecture Guide

How Akka supports a cell-based architecture
The Akka Platform will significantly de-risk this effort and will drastically accelerate the delivery of a 
cell-based project. The Akka SDK makes the power of Akka accessible to a much wider community 
of enterprise developers across, drastically reduces delivery time, and increases maintainability of all 
services by a well-designed separation of concerns (domain, application, API.)

Akka benefits for cell-based architectures
• Akka manifests the cell architecture in a very cost-effective way both in terms of cloud 

infrastructure and operational effort. The Actor Model and Akka were driving forces in the global 
adoption of architecture patterns such as bulkheading, data locality, and event sourcing that 
provide critical building blocks of cell-based architectures.

• Akka provides high scale, multi-region elasticity, agility, and resilience with unparalleled performance: 
(6ms: p99 read latency)

• Provides up to 5 Nines of uptime

• Minimizes operational costs and accelerates agility and velocity

• Enables easy cloud portability (Azure, GCP, AWS, virtual private cloud, and more)

• Provides an architecture that can also transcend the cloud and run on-prem or on the edge.

The Akka Platform cell-based architecture
Akka Platform is the only PaaS that follows the cell-based architecture pattern by default,  
and with multi-region, multi-master replication and federation.

Akka services are each an independent containerized microservices comprising both application 
logic and data. Each service is elastic, able to scale up or down independently based on load. 
Akka thrives with up to millions of self-contained autonomous units which can be combined into 
application cells that run wherever, with no dependency on centralized and heavy weight infra.

4

Logic

Data

Akka service

UsersUsers

Logic

Data
Shard | Stream | Replicate

Key cell concept: distribute logic & data together
Akka apps act as their own in-memory, durable databases that can change locations and recover from failures

Akka projects deplay as cells composed of microservices



5

Akka Cell-Based 
Architecture Guide

Akka services are managed in application projects to create cells that enable seamless operations with 
up to 5 Nines (99.999%) uptime. Data locality with self-contained in-memory data stores ensure 
minimum latency, maximum throughput, while also enabling a run-anywhere approach. Cells can 
deploy anywhere: multi-cloud, in data centers and the edge.

Build and run responsive cell-based architectures
Akka is a platform to build and run transactional, durable, and real-time services  

that are elastic, agile and guaranteed resilient

Logic

Data

Your Akka app

Local usersLocal usersDev Ops

Logic

Data
Shard | Stream | Replicate

Managed infrastructure
Compute Storage & I/O Observability 

SDK
 

Components  

Sandboxes 

 

Libraries
 

Environments
 

Starting at
$0.25 / hour

 

Serverless 

k8s  |  k3s  |  Docker

Self-Hosted 

BYOC 
GCP  |  AWS  |  Azure

Monitoring  |  APM  |  Tracing
Endpoint protection
Threat intelligence

Kafka  |  API Gateways
Service mesh  |  Peering

Cache  |  Persistence

JVMs |  Runtimes |  Kubernetes
Containers |  VMs

actors  |  messaging  |  gRPC
clustering  |  persistence

HTTP  |  streams  |  integration

console  |  debugger

endpoints |  view
streaming|  entities
timers |  workflows

Your application code is unpolluted with configuration or infrastructure code, based on simple 
domain objects, yet inherits the best practice patterns built upon Akka’s 15 years of experience with 
highly distributed, highly elastic event sourced applications. Customers get the power of the Actor 
Model and event sourcing without needing to have experience with either.



6

Akka Cell-Based 
Architecture Guide

Distributed computing simplified

Akka Components are packaged into an Akka Service

Your code

domain {
data : key-value
d2   : string
d3   : custom

}

commands {
insert()
update()
delete()

}

event_handlers {     
on_change()

} 

Akka cluster

Network event log

Persistence

that run
within

Application cells deploy into
automatically

inherits  

Auto scaling 

Patterns Akka environments

Akka app
 

Load balancing
 

Retries 

Bulkheads 

Retry backoffs 

Bulkheads 

Retry backoffs 

Services 

End users 

Endpoint

API gateway 

EndpointEndpoint

Shard 

Instance 

E
Shard 

Instance 

E
Shard 

Instance 

E

Each Akka service is composed of a set of standard Akka components used in our SDK as building 
blocks for cell-based applications. Each Akka component is, itself built upon the Actor Model, 
isolating resources and enabling granular levels of isolation and scaling. Individual Akka components 
can scale independently and elastically. Each service can itself be viewed as a cell with independent 
deployment and operational control.

invoke update

update

query

query

query

poll

stream

stream

stream
Invoke

stream
Invoke

Akka service  |  Brokers  |  APIs  |  Data streams

End users  |  Brokers  |  Data streams

Endpoint

Timer Workflow

Entity View

Consumer Consumer

Entity

Akka service



7

Akka Cell-Based 
Architecture Guide

The Akka SDK requires learning six simple components, with simple unpolluted business logic, 
enabling rapid ramp up for developers, faster development, and lower maintenance effort. 

Components

Entities
Build apps that act as their  
own in-memory, durable,  
and replicated database.

Views
Access multiple entities or 
retrieve entities by attributes 
other than entity id.

Endpoints
Design HTTP and   
gRPC APIs.

Streaming

Streaming producers and 
consumers enable real-time  
data integration. 

Workflows
Execute durable, long- 
running processes with 
point-in-time recovery.

Timers
Execute actions with 
a reliability guarantee

7

domain {
data        : custom
method()    {}
unit_test() {}

}

@non_domain_tag
domain {

@more_debt_tags
data : custom

@even_more_tags
method() {

leaky_messaging_API()
leaky_data_API()

}

@more_dependencies
unit_test() {}

}

With Akka:
Domain separation

Without Akka:
Polluted domain logic

Offline dev
Local console, event debugger, sandboxes, and separation of concerns ensures high dev velocity  
with minimal local configuration.

Separation of concerns
Decorators and APIs create 
technical debt, cross-team 
friction, and coherence leaks. 
With Akka, build and test your 
domain code separately. Akka 
components inject intelligence 
at build.



8

Akka Cell-Based 
Architecture Guide

Akka service cells can deploy anywhere and continuously replicate data with each other.

All communication follows the Actor Model and Event Sourcing out-of-the box. Developers  
do not need to be experts in these to get the benefits. Communications is brokerless, real-time, 
event-driven and highly efficient over gRPC.

Akka Services are deployed as cells

invoke update

update

query

query

query

poll

stream

stream

stream
Invoke

stream
Invoke

Akka service  |  Brokers  |  APIs  |  Data streams

End users  |  Brokers  |  Data streams

Akka Components are packaged into an Akka Service Run in multiple regions with multi-master

Endpoint

Timer Workflow

Entity View

Consumer Consumer

Entity

Akka service

app data
replication

mTLS

invoke update

update

query

query

query

poll

stream

stream

stream
Invoke

stream
Invoke

Akka service  |  Brokers  |  APIs  |  Data streams

End users  |  Brokers  |  Data streams

Endpoint

Timer Workflow

Entity View

Consumer Consumer

Entity

Akka service

Transform

Microservice A

Local users Local users

Your write
data

Your
queries

Message / EventMessage / Event

Transform

Microservice B

Local users Local users

Your write
data

Your
queries

Transform

Microservice C

Local users Local users

Your write
data

Your
queries



9

Akka Cell-Based 
Architecture Guide

 Architectural parallels

Feature Akka Platform Cell-based architecture

Basic units Component (built on Actor) & Service 
(Services combine closely related 
components deployed together)

Cell

Communication Message-passing API gateways & eventing

State management Private, encapsulated Cell-local storage

Failure containment Supervisor hierarchies Fault-isolated boundaries

Scalability mechanism Component replication/sharding Cell replication/partitioning

Deployment environment
Akka platform deploys cells into one or more Cloud regions, depending on the requirements  
of each application in terms of target regions, resilience and elasticity requirements, etc. 

Akka Platform multi-region replicated cell deployment

 
 
 
 

 
 
 

Akka BYOC
Application cell

Customer-owned regions
in GCP, AWS, Azure

 
 

 
 

 
 

 

Execution
A

P
I

Execution
A

P
I

 
 

 

Your Akka workloads  

 
 
 

 
 
 

 
 
 
 
 
 
 

mTLS 

app data
replication

 
 

 

•  Organizations, accounts & users
•  Secrets and certificate rotation
•  Projects
•  Multi-region federation

•  Projects/Services
•  Data & Replication
•  Routes
•  Secrets
•  K8s Orchestration

 
 

 

Akka Management
api.akka.io

 
 M

anagem
ent

A
P

I
 

 

  

Devs
Ops

CI/CD
 

Your app end
users & systems

 

 

M
anagem

ent
A

P
I

 
 
 
 

 
 
 

Akka BYOC
Application cell

Customer-owned regions
in GCP, AWS, Azure

 
 

 
 

 

 

 

Execution
A

P
I

Execution
A

P
I

 

 

 

Your Akka workloads 

•  Projects/Services
•  Data & Replication
•  Routes
•  Secrets
•  K8s Orchestration

Devs
Ops

CI/CD



Regional cloud

Central cloud

Devices Near edge

Event bus
Input cluster

Event bus
output cluster

Microservices cluster

Distributed    Database

The problem with blocking calls: lock entanglement
Blocking calls have a ripple effect tying up resources across multiple heterogeneous clusters

A single operation can 
tie up multiple threads 

across multiple clusters.

Locks multiply in distributed systems. This amplifies brittleness and complexity across systems tying up resources.  
The result is less reliable, harder to scale or change, and slows release velocity.

10

Akka Cell-Based 
Architecture Guide

Edge deployment and integration
Akka also seamlessly integrates from edge to Cloud. Deploy Akka services in a cell-based paradigm 
and replicate data automatically between application cells. Technologies such as Kafka are not well 
suited to Edge deployments, while others like Flink and Postgres are definitely architected only for 
Cloud or Data Center deployment.

Easily create and deploy digital twins following cell-based architecture.



11

Akka Cell-Based 
Architecture Guide

Akka solves this with the Actor Model and the 
Event Sourcing approach. State changes are 
captured and replicated across local in-memory 
databases, with persistence following an append-
only approach to eliminate the need for locks. 

Akka platform inherently delivers cell-based 
microservices architecture applications. The 
platform is intrinsically based on Event Sourcing 
and Streaming. Enabling processing billions of 
events and enabling deploying cells anywhere, 
whether Edge, Cloud and On Premise. You get 
fully tested and battle-hardened capabilities. 

With traditional cloud services and 
technologies, you will have to build your own 
framework to enable a cell-based architecture, 
as well as to manage testing, deployments and 
operations at scale.

Building cells with Akka
With the Akka Platform you build apps with the 
simple but powerful Akka SDK, not directly  
with the APIs for Akka Libraries.  Applications 
built using the Akka Platform are easy to 
develop (5-10x faster than with the libraries), 
and easier to operate. 

The Akka Platform SDK makes the power of 
Akka accessible to a much wider community  
of enterprise developers across you, and 
increases maintainability.

Developers can develop offline. There’s a local 
console, event debugger, sandboxes, and 
separation of concerns (domain, application, 
API) ensures high dev velocity with minimal 
local configuration.

There is a strict separation of concerns. With 
Akka, you build and test your domain code 
separately. Akka components inject intelligence 
at build. Layers are implemented as the three 
packages: domain, application, API. More on the 
architectural and deployment models can be 
found here: doc.akka.io/concepts/index.html 

The Akka Platform SDK offers the following 
components which deploy as Akka Services, 
microservices which deploy as elastic Cells on 
the Akka platform, or as Self-managed Nodes, 
cells that you can manage and scale yourself, 
deployed in your Kubernetes environment.

Stateful components

• Event Sourced Entities — for managing  
Event state

• Key Value Entities — for managing  
Key-Value state

• Workflows — for stateful long running 
choreography and orchestration.

End points — components to define APIs

• HTTP Endpoints — for RESTful APIs

• gRPC Endpoints — for gRPC APIs

Other components

• Consumers — for consuming and producing 
event streams

• Views — for Querying State from Entities  
and Workflows for CQRS pattern.

• Timers — for Timed/scheduled actions  
and tasks

https://doc.akka.io/concepts/index.html
https://doc.akka.io/java/event-sourced-entities.html
https://doc.akka.io/java/key-value-entities.html
https://doc.akka.io/java/workflows.html
https://doc.akka.io/java/http-endpoints.html
https://doc.akka.io/java/grpc-endpoints.html
https://doc.akka.io/java/consuming-producing.html
https://doc.akka.io/java/views.html
https://doc.akka.io/java/timed-actions.html


12

Akka Cell-Based 
Architecture Guide

Summary
We have seen how cell-based architectures, particularly combined with event sourcing and 
microservices patterns, support greater agility, resilience and elasticity. The Akka Platform excels 
at enabling these robust cell-based architectures. Akka inherently supports the principles of cell-
based design, providing features like self-contained, independent services with built-in data locality 
and in-memory data stores, ensuring low latency and high throughput. The platform’s use of the 
Actor Model and Event Sourcing eliminates blocking calls, enhances fault isolation, and simplifies 
replication, crucial for resilience and disaster recovery.

Key strengths of Akka Platform for cell-based architectures:

• Inherent support for cell-based principles: Self-contained services, data locality.

• Robustness: Actor Model and Event Sourcing for fault isolation and resilience.

• High availability: 5 Nines of uptime.

• Developer efficiency: Akka Platform SDK simplifies development.

• Scalability and elasticity: Multi-region and cloud portability.

• Superior performance: Low latency, high throughput.

• Edge deployment capability.

• Ideal fit for applications that must integrate LLMs and other AI models due to their slow 
performance, event driven nature and the need to maintain stateful interactions to ensure resilient 
applications that deliver a responsive experience.

The Akka Platform SDK further streamlines development, abstracting complexities and offering 
pre-built components for state management, APIs, and event stream processing. This dramatically 
accelerates project delivery and reduces maintenance, allowing developers to focus on business 
logic rather than infrastructure. Akka also boasts excellent scalability, multi-region elasticity, and 
cloud portability (Azure, GCP, AWS), while remaining suitable for edge deployments. In contrast 
to traditional cloud technologies, Akka provides a natural foundation for cell-based architectures, 
delivering superior resilience, performance, and developer velocity right out of the box.

Talk it through 
Contact us to discuss your unique requirements 
with our solution architects and engineers. We 
will — without any pressure — create a tailored, 
detailed TCO estimate of what it costs to 
build and operate a multi-region app with any 
performance profile.

Try it out
With Akka, your team can build and deploy your 
own multi-region replicated app in minutes. 
Follow the 5-minute tutorial for new accounts 
at Akka.io to deploy, run, and test an application 
that runs across three regions, each in a 
different cloud provider.

Next steps

https://akka.io/contact-us
https://console.akka.io/register?_gl=1*1j4soln*_gcl_au*MTQxNTQyMTI3OS4xNzMyNTU0NDkz
https://console.akka.io/register?_gl=1*1j4soln*_gcl_au*MTQxNTQyMTI3OS4xNzMyNTU0NDkz


©2025 Akka Inc. All rights reserved.


